Posts tagged distributed

Observability for Distributed Computing with Dask

Debugging is hard. Distributed debugging is hell.

When dealing with unexpected issues in a distributed system, you need to understand what and why it happened, how interactions between individual pieces contributed to the problems, and how to avoid them in the future. In other words, you need observability. This article explains what observability is, how Dask implements it, what pain points remain, and how Coiled helps you overcome these.

The Coiled metrics dashboard provides observability into a Dask cluster and its workloads.

Read more ...


Shuffling large data at constant memory in Dask

With release 2023.2.1, dask.dataframe introduces a new shuffling method called P2P, making sorts, merges, and joins faster and using constant memory. Benchmarks show impressive improvements:

P2P shuffling uses constant memory while task-based shuffling scales linearly.

Read more ...